Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Phys Rev Lett ; 132(15): 150401, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683009

RESUMO

Quantum many-body scars are nonthermal excited eigenstates of nonintegrable Hamiltonians, which could support coherent revival dynamics from special initial states when scars form an equally spaced tower in the energy spectrum. For open quantum systems, engineering many-body scarred dynamics by a controlled coupling to the environment remains largely unexplored. Here, we provide a general framework to exactly embed quantum many-body scars into the decoherence-free subspaces of Lindblad master equations. The dissipative scarred dynamics manifest persistent periodic oscillations for generic initial states, and can be practically utilized to prepare scar states with potential quantum metrology applications. We construct the Liouvillian dissipators with the local projectors that annihilate the whole scar towers, and utilize the Hamiltonian part to rotate the undesired states out of the null space of dissipators. We demonstrate our protocol through several typical models hosting many-body scar towers and propose an experimental scheme to observe the dissipative scarred dynamics based on digital quantum simulations and resetting ancilla qubits.

2.
Phys Rev Lett ; 132(13): 130601, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613306

RESUMO

Synthetic dimension is a potent tool in quantum simulation of topological phases of matter. Here we propose and demonstrate a scheme to simulate an anisotropic Harper-Hofstadter model with controllable magnetic flux on a two-leg ladder using the spin and motional states of a single trapped ion. We verify the successful simulation of this model by comparing the measured dynamics with theoretical predictions under various coupling strength and magnetic flux, and we observe the chiral motion of wave packets on the ladder as evidence of the topological chiral edge modes. We develop a quench path to adiabatically prepare the ground states for varying magnetic flux and coupling strength, and we measure the chiral current on the ladder for the prepared ground states, which allows us to probe the quantum phase transition between the Meissner phase and the vortex phase. Our work demonstrates the trapped ion as a powerful quantum simulation platform for topological quantum matter.

3.
Nat Commun ; 15(1): 204, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172118

RESUMO

Generating ion-photon entanglement is a crucial step for scalable trapped-ion quantum networks. To avoid the crosstalk on memory qubits carrying quantum information, it is common to use a different ion species for ion-photon entanglement generation such that the scattered photons are far off-resonant for the memory qubits. However, such a dual-species scheme can be subject to inefficient sympathetic cooling due to the mass mismatch of the ions. Here we demonstrate a trapped-ion quantum network node in the dual-type qubit scheme where two types of qubits are encoded in the S and F hyperfine structure levels of 171Yb+ ions. We generate ion photon entanglement for the S-qubit in a typical timescale of hundreds of milliseconds, and verify its small crosstalk on a nearby F-qubit with coherence time above seconds. Our work demonstrates an enabling function of the dual-type qubit scheme for scalable quantum networks.

4.
Phys Rev Lett ; 130(16): 163001, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154650

RESUMO

Non-Hermitian systems generically have complex energies, which may host topological structures, such as links or knots. While there has been great progress in experimentally engineering non-Hermitian models in quantum simulators, it remains a significant challenge to experimentally probe complex energies in these systems, thereby making it difficult to directly diagnose complex-energy topology. Here, we experimentally realize a two-band non-Hermitian model with a single trapped ion whose complex eigenenergies exhibit the unlink, unknot, or Hopf link topological structures. Based on non-Hermitian absorption spectroscopy, we couple one system level to an auxiliary level through a laser beam and then experimentally measure the population of the ion on the auxiliary level after a long period of time. Complex eigenenergies are then extracted, illustrating the unlink, unknot, or Hopf link topological structure. Our work demonstrates that complex energies can be experimentally measured in quantum simulators via non-Hermitian absorption spectroscopy, thereby opening the door for exploring various complex-energy properties in non-Hermitian quantum systems, such as trapped ions, cold atoms, superconducting circuits, or solid-state spin systems.

5.
Phys Rev Lett ; 129(14): 140501, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240415

RESUMO

The Jaynes-Cummings-Hubbard (JCH) model is a fundamental many-body model for light-matter interaction. As a leading platform for quantum simulation, the trapped ion system has realized the JCH model for two to three ions. Here, we report the quantum simulation of the JCH model using up to 32 ions. We verify the simulation results even for large ion numbers by engineering low excitations and thus low effective dimensions; then we extend to 32 excitations for an effective dimension of 2^{77}, which is difficult for classical computers. By regarding the phonon modes as baths, we explore Markovian or non-Markovian spin dynamics in different parameter regimes of the JCH model, similar to quantum emitters in a structured photonic environment. We further examine the dependence of the non-Markovian dynamics on the effective Hilbert space dimension. Our Letter demonstrates the trapped ion system as a powerful quantum simulator for many-body physics and open quantum systems.

6.
Nat Commun ; 13(1): 4993, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008401

RESUMO

Classification and identification of different phases and the transitions between them is a central task in condensed matter physics. Machine learning, which has achieved dramatic success in a wide range of applications, holds the promise to bring unprecedented perspectives for this challenging task. However, despite the exciting progress made along this direction, the reliability of machine-learning approaches in experimental settings demands further investigation. Here, with the nitrogen-vacancy center platform, we report a proof-of-principle experimental demonstration of adversarial examples in learning topological phases. We show that the experimental noises are more likely to act as adversarial perturbations when a larger percentage of the input data are dropped or unavailable for the neural network-based classifiers. We experimentally implement adversarial examples which can deceive the phase classifier with a high confidence, while keeping the topological properties of the simulated Hopf insulators unchanged. Our results explicitly showcase the crucial vulnerability aspect of applying machine learning techniques in experiments to classify phases of matter, which can benefit future studies in this interdisciplinary field.

7.
Nat Commun ; 13(1): 3412, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701410

RESUMO

Supersymmetry (SUSY) helps solve the hierarchy problem in high-energy physics and provides a natural groundwork for unifying gravity with other fundamental interactions. While being one of the most promising frameworks for theories beyond the Standard Model, its direct experimental evidence in nature still remains to be discovered. Here we report experimental realization of a supersymmetric quantum mechanics (SUSY QM) model, a reduction of the SUSY quantum field theory for studying its fundamental properties, using a trapped ion quantum simulator. We demonstrate the energy degeneracy caused by SUSY in this model and the spontaneous SUSY breaking. By a partial quantum state tomography of the spin-phonon coupled system, we explicitly measure the supercharge of the degenerate ground states, which are superpositions of the bosonic and the fermionic states. Our work demonstrates the trapped-ion quantum simulator as an economic yet powerful platform to study versatile physics in a single well-controlled system.

8.
Phys Rev Lett ; 128(20): 200502, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657866

RESUMO

Quantum simulation of 1D relativistic quantum mechanics has been achieved in well-controlled systems like trapped ions, but properties like spin dynamics and response to external magnetic fields that appear only in higher dimensions remain unexplored. Here we simulate the dynamics of a 2D Weyl particle. We show the linear dispersion relation of the free particle and the discrete Landau levels in a magnetic field, and we explicitly measure the spatial and spin dynamics from which the conservation of helicity and properties of antiparticles can be verified. Our work extends the application of an ion trap quantum simulator in particle physics with the additional spatial and spin degrees of freedom.

9.
Phys Rev Lett ; 128(16): 160504, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522503

RESUMO

Quantum simulation provides important tools in studying strongly correlated many-body systems with controllable parameters. As a hybrid of two fundamental models in quantum optics and in condensed matter physics, the Rabi-Hubbard model demonstrates rich physics through the competition between local spin-boson interactions and long-range boson hopping. Here, we report an experimental realization of the Rabi-Hubbard model using up to 16 trapped ions and present a controlled study of its equilibrium properties and quantum dynamics. We observe the ground-state quantum phase transition by slowly quenching the coupling strength, and measure the quantum dynamical evolution in various parameter regimes. With the magnetization and the spin-spin correlation as probes, we verify the prediction of the model Hamiltonian by comparing theoretical results in small system sizes with experimental observations. For larger-size systems of 16 ions and 16 phonon modes, the effective Hilbert space dimension exceeds 2^{57}, whose dynamics is intractable for classical supercomputers.

10.
Phys Rev Lett ; 129(27): 270501, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638302

RESUMO

Tensor networks are efficient representations of high-dimensional tensors with widespread applications in quantum many-body physics. Recently, they have been adapted to the field of machine learning, giving rise to an emergent research frontier that has attracted considerable attention. Here, we study the trainability of tensor-network based machine learning models by exploring the landscapes of different loss functions, with a focus on the matrix product states (also called tensor trains) architecture. In particular, we rigorously prove that barren plateaus (i.e., exponentially vanishing gradients) prevail in the training process of the machine learning algorithms with global loss functions. Whereas, for local loss functions the gradients with respect to variational parameters near the local observables do not vanish as the system size increases. Therefore, the barren plateaus are absent in this case and the corresponding models could be efficiently trainable. Our results reveal a crucial aspect of tensor-network based machine learning in a rigorous fashion, which provide a valuable guide for both practical applications and theoretical studies in the future.

11.
Phys Rev Lett ; 127(14): 143201, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652176

RESUMO

Trapped ions are one of the leading platforms in quantum information science. For quantum computing with large circuit depth and quantum simulation with long evolution time, it is of crucial importance to cool large ion crystals at runtime without affecting the internal states of the computational qubits, thus the necessity of sympathetic cooling. Here, we report multi-ion sympathetic cooling on a long ion chain using a narrow cooling beam focused on two adjacent ions, and optimize the choice of the cooling ions according to the collective oscillation modes of the chain. We show that, by cooling a small fraction of ions, cooling effects close to the global Doppler cooling limit can be achieved. This experiment therefore demonstrates an important enabling step for quantum information processing with large ion crystals.

12.
Phys Rev Lett ; 127(9): 090501, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506190

RESUMO

Non-Hermitian topological phases exhibit a number of exotic features that have no Hermitian counterparts, including the skin effect and breakdown of the conventional bulk-boundary correspondence. Here, we implement the non-Hermitian Su-Schrieffer-Heeger Hamiltonian, which is a prototypical model for studying non-Hermitian topological phases, with a solid-state quantum simulator consisting of an electron spin and a ^{13}C nuclear spin in a nitrogen-vacancy center in a diamond. By employing a dilation method, we realize the desired nonunitary dynamics for the electron spin and map out its spin texture in the momentum space, from which the corresponding topological invariant can be obtained directly. From the measured spin textures with varying parameters, we observe both integer and fractional winding numbers. The non-Hermitian topological phase with fractional winding number cannot be continuously deformed to any Hermitian topological phase and is intrinsic to non-Hermitian systems. Our result paves the way for further exploiting and understanding the intriguing properties of non-Hermitian topological phases with solid-state spins or other quantum simulation platforms.

13.
Phys Rev Lett ; 127(6): 060505, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420337

RESUMO

Cross-resonance (CR) gates have emerged as a promising scheme for fault-tolerant quantum computation with fixed-frequency qubits. We experimentally implement an entangling CR gate by using a microwave-only control in a tunable coupling superconducting circuit, where the tunable coupler provides extra degrees of freedom to verify optimal conditions for constructing a CR gate. By developing a three-qubit Hamiltonian tomography protocol, we systematically investigate the dependency of gate fidelities on spurious qubit interactions and present the first experimental approach to the evaluation of the perturbation impact arising from spectator qubits. Our results reveal that the spectator qubits lead to reductions in CR gate fidelity dependent on ZZ interactions and particular frequency detunings between spectator and gate qubits. The target spectator demonstrates a more serious impact than the control spectator under a standard echo pulse scheme, whereas the degradation of gate fidelity is observed up to 22.5% as both the spectators are present with a modest ZZ coupling to the computational qubits. Our experiments uncover an optimal CR operation regime, and the method we develop here can readily be applied to improving other kinds of two-qubit gates in large-scale quantum circuits.

14.
Phys Rev Lett ; 126(15): 152502, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929212

RESUMO

A new α-emitting isotope ^{214}U, produced by the fusion-evaporation reaction ^{182}W(^{36}Ar,4n)^{214}U, was identified by employing the gas-filled recoil separator SHANS and the recoil-α correlation technique. More precise α-decay properties of even-even nuclei ^{216,218}U were also measured in the reactions of ^{40}Ar, ^{40}Ca beams with ^{180,182,184}W targets. By combining the experimental data, improved α-decay reduced widths δ^{2} for the even-even Po-Pu nuclei in the vicinity of the magic neutron number N=126 are deduced. Their systematic trends are discussed in terms of the N_{p}N_{n} scheme in order to study the influence of proton-neutron interaction on α decay in this region of nuclei. It is strikingly found that the reduced widths of ^{214,216}U are significantly enhanced by a factor of two as compared with the N_{p}N_{n} systematics for the 84≤Z≤90 and N<126 even-even nuclei. The abnormal enhancement is interpreted by the strong monopole interaction between the valence protons and neutrons occupying the π1f_{7/2} and ν1f_{5/2} spin-orbit partner orbits, which is supported by the large-scale shell model calculation.

15.
Nat Commun ; 12(1): 1126, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602942

RESUMO

Quantum phase transitions (QPTs) are usually associated with many-body systems in the thermodynamic limit when their ground states show abrupt changes at zero temperature with variation of a parameter in the Hamiltonian. Recently it has been realized that a QPT can also occur in a system composed of only a two-level atom and a single-mode bosonic field, described by the quantum Rabi model (QRM). Here we report an experimental demonstration of a QPT in the QRM using a 171Yb+ ion in a Paul trap. We measure the spin-up state population and the average phonon number of the ion as two order parameters and observe clear evidence of the phase transition via adiabatic tuning of the coupling between the ion and its spatial motion. An experimental probe of the phase transition in a fundamental quantum optics model without imposing the thermodynamic limit opens up a window for controlled study of QPTs and quantum critical phenomena.

16.
Phys Rev Lett ; 125(3): 032502, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32745401

RESUMO

A new, very short-lived neutron-deficient isotope ^{222}Np was produced in the complete-fusion reaction ^{187}Re(^{40}Ar,5n)^{222}Np, and observed at the gas-filled recoil separator SHANS. The new isotope ^{222}Np was identified by employing a recoil-α correlation measurement, and six α-decay chains were established for it. The decay properties of ^{222}Np with E_{α}=10016(33) keV and T_{1/2}=380_{-110}^{+260} ns were determined experimentally. The α-decay systematics of Np isotopes is improved by adding the new data for ^{222}Np, which validates the N=126 shell effect in Np isotopes. The evolution of the N=126 shell closure is discussed in the neutron-deficient nuclei up to Np within the framework of α-decay reduced width.

17.
Phys Rev Lett ; 124(24): 240504, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639803

RESUMO

The use of multiplexed atomic quantum memories (MAQM) can significantly enhance the efficiency to establish entanglement in a quantum network. In the previous experiments, individual elements of a quantum network, such as the generation, storage, and transmission of quantum entanglement have been demonstrated separately. Here we report an experiment to show the compatibility and integration of these basic operations. Specifically, we generate photon-atom entanglement from any chosen pair of memory cells in a 6×5 MAQM, convert the spin-wave to time-bin photonic excitation after a controllable storage time, and then store and retrieve the photon in a second MAQM for another controllable storage time. The preservation of quantum information in this process is verified by measuring the state fidelity. We also demonstrate that higher dimension quantum states can be transferred between the two distant MAQMs.

18.
Zhonghua Nei Ke Za Zhi ; 59(7): 528-534, 2020 Jul 01.
Artigo em Chinês | MEDLINE | ID: mdl-32594686

RESUMO

Objective: To investigate the significance of plasma pentraxin 3 (PTX3) in patients with secondary hemophagocytic lymphohistiocytosis (sHLH). Methods: Plasma PTX3 levels were tested by ELISA in 48 newly diagnosed sHLH patients, 18 healthy volunteers and 9 lymphoma controls in the First Affiliated Hospital of Nanjing Medical University from January 2017 to July 2019. Clinical parameters were collected, and the correlations with PTX3 levels were analyzed. Results: PTX3 level in newly diagnosed group was significantly higher than that of healthy control group [16.29(1.17-66.00) vs. 0.76(0.01-7.86) µg/L, P<0.01]. Patients with lymphoma-associated HLH(LHLH) had higher plasma level of PTX3 than Fhose with infection-associated HLH (IHLH) [24.29(3.36-66.00) vs. 9.56(1.17-36.50)µg/L, P<0.05]. Plasma PTX3 levels in 48 sHLH patients were positively correlated with serum ferritin (P<0.05). Receiver operating characteristic (ROC) curve for plasma PTX3 levels of sHLH and healthy controls produced a cutoff value at 3.9 µg/L, with its 86.7% sensitivity and 94.4% specificity. And ROC analysis showed that PTX3 17.5 µg/L was the critical value for diagnosis of LHLH from non-LHLH group, that the sensitivity and specificity were 63.0% and 76.2% respectively. The 1-year overall survival (OS) rate in patients with PTX3≥17.5 µg/L was significantly lower in those with PTX3<17.5 µg/L (18.5% vs. 75.8%, P<0.01). Conclusion: These results indicate the potential of PTX3 as a biomarker for diagnosis and prognosis in patients with sHLH.


Assuntos
Proteína C-Reativa , Linfo-Histiocitose Hemofagocítica , Componente Amiloide P Sérico , Biomarcadores Tumorais , Proteína C-Reativa/análise , Humanos , Linfo-Histiocitose Hemofagocítica/diagnóstico , Curva ROC , Sensibilidade e Especificidade , Componente Amiloide P Sérico/análise
19.
Sci Adv ; 6(21): eaba7292, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32494752

RESUMO

The Kibble-Zurek mechanism provides a unified theory to describe the universal scaling laws in the dynamics when a system is driven through a second-order quantum phase transition. However, for first-order quantum phase transitions, the Kibble-Zurek mechanism is usually not applicable. Here, we experimentally demonstrate and theoretically analyze a power-law scaling in the dynamics of a spin-1 condensate across a first-order quantum phase transition when a system is slowly driven from a polar phase to an antiferromagnetic phase. We show that this power-law scaling can be described by a generalized Kibble-Zurek mechanism. Furthermore, by experimentally measuring the spin population, we show the power-law scaling of the temporal onset of spin excitations with respect to the quench rate, which agrees well with our numerical simulation results. Our results open the door for further exploring the generalized Kibble-Zurek mechanism to understand the dynamics across first-order quantum phase transitions.

20.
Phys Rev Lett ; 124(4): 043001, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058743

RESUMO

Dynamical quantum phase transitions are closely related to equilibrium quantum phase transitions for ground states. Here, we report an experimental observation of a dynamical quantum phase transition in a spinor condensate with correspondence in an excited state phase diagram, instead of the ground state one. We observe that the quench dynamics exhibits a nonanalytical change with respect to a parameter in the final Hamiltonian in the absence of a corresponding phase transition for the ground state there. We make a connection between this singular point and a phase transition point for the highest energy level in a subspace with zero spin magnetization of a Hamiltonian. We further show the existence of dynamical phase transitions for finite magnetization corresponding to the phase transition of the highest energy level in the subspace with the same magnetization. Our results open a door for using dynamical phase transitions as a tool to probe physics at higher energy eigenlevels of many-body Hamiltonians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...